Acta Cryst. (1989). A45, 213-217

213

Explicit Fourier Representations of Non-Ideal Hypercentric P.D.F.’s of |E|

By URri SHMUELI
School of Chemistry, Tel Aviv University, Ramat Aviv, 69 978 Tel Aviv, Israel

GEORGE H. WEiss

Division of Computer Research and Technology, Laboratory of Physical Sciences, National Institute of Health,
Bethesda, Maryland 20892, USA

AND ARTHUR J. C. WiLsON

Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 12 August 1987; accepted 19 September 1988)

Abstract

Explicit non-ideal hypercentric distributions of the
magnitude of the normalized structure factor have
been derived and investigated for the space group P1.
One of the distribution types investigated arises when
the asymmetric unit of P1 consists of several identical
centrosymmetric motifs, interrelated by additional
non-crystallographic centres of symmetry. The ideal
version of such distributions was studied by Rogers
& Wilson [Acta Cryst. (1953), 6, 439-449]. The other
distribution type studied originates from atomic
arrangements in which the asymmetric unit is com-
posed of several unrelated centrosymmetric frag-
ments that may differ in their sizes and chemical
compositions. Explicit non-ideal probability density
functions (p.d.f.’s) of the magnitude of the normal-
ized structure factor were formulated for both above
types of distribution as Fourier series, were evaluated
numerically and were compared with appropriately
simulated distributions of | E|. The computations were
carried out for a range of atomic compositions, and
numbers of unrelated centrosymmetric fragments
that comprise the asymmetric unit; both of these
factors have a significant influence on the devia-
tion of the hypercentric p.d.f’s from the values
predicted on the basis of the central-limit theorem
approximation.

Introduction

Ideal distributions (i.e. those based on the central
limit theorem) which account for the presence of
non-crystallographic symmetry were first proposed
by Lipson & Woolfson (1952) and were further gen-
eralized by Rogers & Wilson (1953). Shmueli &
Wilson (1982) mention a study of the non-ideal bicen-
tric distribution, in which several explicit orthogonal
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polynomials that have the Rogers & Wilson (1953)
probability density function (p.d.f.) as their weight
function were derived. Another approximate gen-
eralization of the Rogers & Wilson ideal p.d.f., to all
centrosymmetric space groups and heterogeneous
atomic compositions, was put forward by Ghosh &
Nigam (1983). These approximate non-ideal p.d.f.’s
are characterized by an unusual complexity, and the
chance of success for deriving non-ideal hypercentric
p.d.f.’s, which lend themselves to accurate computa-
tion, looked remote. The introduction of the Fourier
method into crystallographic intensity statistics
(Shmueli, Weiss, Kiefer & Wilson, 1984) led to a
relatively straightforward derivation of an analyti-
cally exact and accurately computable bicentric p.d.f.
(Shmueli, Weiss & Kiefer, 1985). A major role, in
this novel approach, is played by the characteristic
function corresponding to the required p.d.f. In fact,
the knowledge of this function suffices for an exact
and explicit formulation of the coefficients of the
Fourier series which represents the required p.d.f.
Similar investigations of hypercentric distributions of
higher orders can now be readily undertaken, at least
for the space groups leading to a simple functional
form of the structure factor.

The purpose of the present work is (i) to derive
exact and explicit functional forms of two types of
non-ideal hypercentric p.d.f.’s based on an asym-
metric unit of the space group P1, which (a) consists
of several identical centrosymmetric subunits, of
arbitrary composition, that are interrelated by addi-
tional centres of symmetry [as in Rogers & Wilson
(1953)], or (b) is built up from several unrelated
centrosymmetric subunits of arbitrarily different sizes
and chemical compositions, and (ii) to compute the
p.d.f’s, for a range of subunit numbers, sizes and
compositions, to good accuracy and to test the results
against histograms of appropriately simulated |E|
values.
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Derivation of multicentric p.d.f.’s in P1

Case 1: Identical centrosymmetric fragments related
by centres of symmetry

In this case we seek to determine the p.d.f. for a
P1 structure, the asymmetric unit of which is com-
posed of 2"7? identical centrosymmetric motifs,
related by n —1 non-crystallographic centres of sym-
metry (Rogers & Wilson, 1953). In contrast to that
reference, the fundamental motif is allowed to have
any chemical composition. The non-crystallographic
centres of symmetry are located at the rationally
independent positions d;, i =2,..., n. Note that the
integer n refers, in the present case, to independent
centres of symmetry, including the crystallographic
one; thus n =2 corresponds to the bicentrosymmetric
arrangement.

If we follow the derivation of hypercentric distribu-
tions given by Rogers & Wilson (1953), we find that
the normalized structure factor E for the above
arrangement is given by

m/2
E=2"cos ¢cos ¢3...cos ¢, 3. njcos 6, (1)
j=1
where ¢ =27h.d; and 6,=27h.r;, h being a
reciprocal-lattice vector, and r; the atomic position
vector of the jth atom within the asymmetric subunit;
d,, k=2,...,n, are the position vectors of the
independent non-crystallographic centres of sym-
metry, n; is the normalized scattering factor of the
Jjth atom, and m is the number of atoms in the funda-
mental centrosymmetric fragment.
The required characteristic function is given by

C(w;) = (exp (iv, E)), (2)

which, upon substitution of E from (1) and integra-
tion over the angular variables 6, j=1,...,m/2,
becomes

w/2 w/

Clw)=2/m)"" { oo | dy, . dy,

0

m/2
X [ Jo(2"w,n; cos i, . . . cos d/,,)] (3)
j=1

and the Fourier coefficient for the p.d.f. of |E|, to be
used with (10), is obtained from (3) as indicated
below.

The limiting form of the above p.d.f., for a structure
composed of a large number of nearly equal atoms
in the unit cell, is given by equation (12) of Rogers
& Wilson (1953). The latter equation can be rewritten
in terms of the magnitude of the normalized structure
factor as

P(lEl) — [2n/77_(2n—|)]1/2
w/2 w/

2
x | ... | exp[=(E?/2")sec? ,...sec’ ¥,]
0 0

Xsec . ..sec, dif,...dw,. (4)

NON-IDEAL HYPERCENTRIC P.D.F.’s OF |E|

Equation (12) of Rogers & Wilson (1953) has recently
been represented in terms of Meijer’'s G function
(Wilson, 1987), thereby eliminating the multiple
integration. The present comparative calculations
involve a direct use of (4) in evaluating the tricentric
p.d.f. for the equal-atom case and its comparison with
the result obtained from (3), as used with the Fourier
p.d.f. (10).

Case 2: n—1 unrelated centres in asymmetric unit

We now wish to find the p.d.f. of |E| for a P1
structure, the asymmetric unit of which consists of
n—1 unrelated centrosymmetric subunits, internally
related by n —1 non-crystallographic centres of sym-
metry located atd,, i=2,...,n The n—1 non-crys-
tallographic centres of symmetry are assumed to
occupy rationally independent positions, and the
subunits may differ in their sizes and chemical
compositions. Clearly, for n =2 we obtain the bicen-
trosymmetric arrangement that leads to the non-ideal
bicentric distribution. Let the ith subunit be centred
atd;, and contribute to the unit-cell contents N; atoms.
Its contribution to the normalized structure factor is
given by

_ N,/4
E®Mh)=4 Y ncos 2wh.d)
P

xcos [27h. (r;—d,)], (5)

and has the same functional form as that of the
structure factor for the bicentrosymmetric arrange-
ment (Shmueli, Weiss & Kiefer, 1985). Since the
normalized structure factor for the above-defined n-
centrosymmetric arrangement is just

E(h)=Y E“(h), (6)
the characteristic function for this arrangement is a
product of n—1 characteristic functions correspond-
ing to terms of the form of (5). The latter characteristic
function has the same form as that of the bicentric
p.d.f. (Shmueli, Weiss & Kiefer, 1985), and hence

C(w,) = (exp (iw,E)) (7)

= 1 Ca)), ®)

i=

where

a2 [N./4
C'wy)=(2/m) j[ 10(4w1n;”coso)] de, (9)

0

J

where n}" is the normalized scattering factor of the
jth atom in the asymmetric part of the ith centrosym-
metric fragment of the structure.

The general expression for the non-ideal centric
Fourier p.d.f. of |E| is given by

p(|E|)=a[1+2 %C: C(nak)cos(wak\ED], (10)



URI SHMUELI], GEORGE H. WEISS AND ARTHUR J. C. WILSON

where a is the reciprocal of the maximum value of
|E|, and C(mak) - the value of the characteristic
function at the point 7wak - is the composition- and
symmetry-dependent Fourier coefficient [see, for
example, Shmueli & Weiss (1985, 1987)]. In the pres-
ent work, the functional forms of C are given by (3)
and (7)-(9) for cases 1 and 2, respectively.

Illustrative examples

The examples below involve simulation of the distri-
butions, and their comparison with the theoretical
p.d.f.’s. For case 1 above, (1) served the purpose of
the simulation, and the theoretical p.d.f. for this case
is computed from (10), with coefficients derived from
the characteristic function (3). In distributions per-
taining to case 2 above, (5) has been used for the
simulation, and the theoretical p.d.f.’s were computed
from (10) with coefficients given by (7)-(9) as
described above. The simulation of the distributions
of |[E|in both cases outlined above consisted of samp-
ling the structure-factor expressions while replacing
the scalar products h. d; and h. r; by computer-gener-
ated random numbers, uniform in (0, 1). The values
of 3000 |E|’s have so been simulated in each calcula-
tion, and their histogram was constructed in the [0, 3]
range of | E|, in thirty equal channels. For the purpose
of the comparison, the values of the theoretical p.d.f.,
taken at the midpoints of the histogram channels,
were scaled to the histogram (Shmueli et al., 1984).

The numerical integrations which were carried out
in this work were found to be most conveniently done
by employing Romberg’s adaptive procedure (Davis
& Rabinowitz, 1967). This method seems to overcome
some difficulties associated with the presence of
oscillatory functions in the integrands. The subroutine
DCADRE of the popular mathematical program
library IMSL was employed for this purpose.

Fig. 1 shows distributions belonging to case 1. This
is a Rogers & Wilson type of hypercentrosymmetry,
with a heterogeneous atomic composition displayed
in Fig. 1(a), and the equal-atom case shown in Fig.
1(b). Both figures contain the simulated histograms,
the non-ideal p.d.f.’s computed from (10), with
coefficients derived from (3), and the ideal Rogers &
Wilson (1953) p.d.f.’s computed directly from (4) (for
n=3) by numerical integration. The Fourier p.d.f.’s
in Fig. 1 show some convergence problems, and the
series-truncation ripples are more marked in the
equal-atom case than for the heterogeneous composi-
tion. Such ripples can be smoothed out using, for
example, the Lanczos sigma factors (Hamming,
1973), but it was decided not to apply this device
since the weighting factors tend to distort the p.d.f.
at its low end.

There is very good agreement between the histo-
grams in Fig. 1 and the corresponding Fourier p.d.f.’s.
In the equal-atom case (Fig. 1a) there is also a very
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good agreement between the ideal and the non-ideal
p.d.f.’s, as could have been expected. In the presence
of heavy atoms (Fig. 1b) there is a significant dis-
crepancy between the ideal and the non-ideal p.d.f.’s.
However, the discrepancy is much smaller than in
the case of the bicentric distribution (Shmueli, Weiss
& Kiefer, 1985). This is not surprising since the

I 2 3
|E]
(b)

Fig. 1. Histograms, ideal and non-ideal p.d.f.’s for hypercentric
models of case 1. The construction of the histograms is outlined
in the text. (a) C,,U subunit, n =3; solid: equations (10) and
(3); dashed: Rogers & Wilson (1953) ideal hypercentric p.d.f.
(4). (b) C,s subunit, n = 3; solid: equations (10) and (3); dashed:
Rogers & Wilson (1953) ideal hypercentric p.d.f. (4).



216

asymmetric unit in the tricentrosymmetric arrange-
ment contains two centrosymmetric fragments and
its total composition is CssU,. This degree of
heterogeneity is lower than that of C,3U,, which was
the model asymmetric unit in the study of the bicentric
case.

Fig. 2 illustrates distributions belonging to case 2
(two unrelated centrosymmetric motifs in the asym-

(h)

Fig. 2. Histograms, ideal and non-ideal p.d.f.'s for hypercentric
models of case 2. The construction of the histograms is outlined
in the text. (@) C,,U subunit, n =3; solid: equations (10) and
(7)-(9); dashed: Wilson (1949) centric p.d.f. (b) C,s subunit,
n =3; solid: equations (10) and (7)-(9); dashed: Wilson (1949)
centric p.d.f.

NON-IDEAL HYPERCENTRIC P.D.F.’s OF |E]|

Table 1. Discrepancy measures for comparison of simu-
lated and theoretical distributions

The assumed composition of the asymmetric subunit is C,,X,
X =C or U, and all the subunits are taken to be identical, even
in case 2 calculations. The effective number of histogram channels
is 29 or 30 in all simulations that are referred to in the table. The
quantity n—1 denotes the number of independent non-crystallo-
graphic centres of symmetry in case 1 calculations, and the number
of unrelated centrosymmetric fragments in case 2 calculations. The
subscript ‘centric’ on x? refers to the comparison of the simulated
histogram with the Wilson (1949) p.d.f., and the subscript ‘eq. (4)’
on x? refers to the comparison of the simulated histogram with
the Rogers & Wilson (1953) ideal hypercentric p.d.f. In the calcula-
tion of x? for case 1 the first bin of the histogram was omitted,
since the p.d.f.’s tend to infinity at the origin, and at the midpoint
of the first bin their values are unusually large.

Case 1
n—1 Composition X’ Xiq.@
2 Cys 3228 19-15
2 C,,U 26-00 133-18
Case 2
n-1 Composition X’ Xeentric
2 Cis 26-68 72-35
5 Cis 16-01 18-93
2 C,.U 17-77 26-47
5 C,U 16-01 15-48

metric unit of P1); Fig. 2(a) displays the effect of
atomic heterogeneity, and Fig. 2(b) pertains to the
equal-atom case. The dashed curve in both figures is
the Wilson (1949) centric p.d.f. It is seen that the
distribution arising from two centrosymmetric unre-
lated units is remarkably close to the ideal centric
one, although the heterogeneous composition gives
rise to a better agreement with the centric p.d.f. than
does the equal-atom composition in case 2. In the
heterogeneous composition we have four equal heavy
atoms in the asymmetric unit of P1, and since the
centrosymmetric subunits were assumed to be unre-
lated - and the heavy atoms taken as uranium - we
have (very roughly) a P1 structure having four equal
atoms in the asymmetric unit. When the centrosym-
metric subunits are chosen to be different, and there
is appreciable heterogeneity, the deviation from the
centric p.d.f. is more significant. The small but sig-
nificant deviation from the centric p.d.f. shown by
the equal-atom case 2 distribution is the effect of
non-crystallographic centrosymmetry on the distribu-
tion. When the number of the unrelated centrosym-
metric subunits is increased to five, the agreement
with the centric p.d.f. becomes very good. The
geometry of the case 2 model is related to that under-
lying the sesquicentric distribution (Wilson, 1956).
In all above cases, the agreement between the Four-
ier p.d.f.’s and the simulated histograms is (visually)
very close, and is characterized by good x? values,
shown in Table 1. However, it should be pointed out
that for the compositions chosen the ideal p.d.f.’s also
perform quite well, except in case 1 for extreme
heterogeneity and in case 2 for two equal-atom frag-
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ments. When the number of unrelated fragments
increases the Fourier p.d.f.’s and the histograms are
seen to approach the ideal centric p.d.f. for
homogeneous as well as heterogeneous compositions.
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Géométrie des Relations d’Orientation dans la Symétrie Hexagonale.
Dimension de la Coincidence

Par S. HAaGEGE* ET G. NOUET
LERMAT, ISMRa Université, 14032 Caen CEDEX, France

(Regu le 4 décembre 1987, accepté le 22 aoiit 1988)

Abstract

The main characteristics of the orientation relation-
ship between two hexagonal lattices are simply
denoted by four parameters (M, U, V, W). In the
case of a tridimensional coincidence orientation
relationship, for a rational value of (¢/a)?, these four
parameters become four prime integers (m, un, vn,
wn). The equivalence class of the orientation relation-
ship may be represented by 12 equivalent descriptions
for which the indices of the rotation axes are noted
on the basis of one crystal. This original representa-
tion can lead to the concept of spatial distribution of
the equivalent rotation axes, a distribution which is
strongly related to the c¢/a ratio. In real materials
(¢/a irrational), bidimensional coincidence orienta-
iion relationships can describe a large number of
grain boundaries.

1. Introduction

Les études sur la géométrie des orientations de coin-
cidence pour la symétrie hexagonale ont vraiment
débuté par les travaux de Bruggeman, Bishop & Hartt
(1972). IIs ont recherché de fagon systématique, mais
non exhaustive, les coincidences qui apparaissaient

* En détachement provisoire  I'Institut des Sciences Industriel-
les de I’Université de Tokyo, Japon.
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par rotation autour d’un axe (simple) choisi a priori.
C’était I'application de la notion de fonction géné-
ratrice que Ranganathan (1966) avait développée
pour la symétrie cubique. Une deuxieme approche,
beaucoup plus générale, a été établie par Warrington
& Bufalini (1971) et Warrington (1975); elle considére
la matrice de rotation décrivant I’orientation de coin-
cidence; ils ont montré qu’une telle matrice, écrite
sur la base du crystal, doit avoir tous ses éléments
rationnels. Ceci a été démontré la suite par Grimmer
(1976). Dés lors, il a été évident que les coincidences
tridimensionnelles ne pouvaient exister que pour des
rapports (c¢/a)’ rationnels ou que pour des cas par-
ticuliers, indépendants du rapport c¢/a (rotations
d’axe ¢ ou rotations 180° d’axes dans le plan de base).
Parallélement depuis le début des années 1970,
Grimmer a développé le concept de quaternion
(quatre nombres entiers, premiers entre eux) pour
caractériser la rotation de coincidence. D’abord pour
la symétrie cubique (Grimmer, 1973), puis en géné-
ralisant aux autres symétries (Grimmer, 1980), cet
auteur a montré la validité et I’utilité de ce concept.
Bonnet (1980) a aussi utilisé ce concept pour décrire
les orientations de coincidence entre deux réseaux
quelconques. Une autre approche a été proposée par
Bonnet & Cousineau (1977) et Bonnet, Cousineau &
Warrington (1981); elle est associée a une méthode
numérique pour la détermination directe de la maille
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