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Abstract 

Explicit non-ideal hypercentric distributions of the 
magnitude of the normalized structure factor have 
been derived and investigated for the space group P1. 
One of the distribution types investigated arises when 
the asymmetric unit of P1 consists of several identical 
centrosymmetric motifs, interrelated by additional 
non-crystallographic centres of symmetry. The ideal 
version of such distributions was studied by Rogers 
& Wilson [Acta Cryst. (1953), 6, 439-449]. The other 
distribution type studied originates from atomic 
arrangements in which the asymmetric unit is com- 
posed of several unrelated centrosymmetric frag- 
ments that may differ in their sizes and chemical 
compositions. Explicit non-ideal probability density 
functions (p.d.f.'s) of the magnitude of the normal- 
ized structure factor were formulated for both above 
types of distribution as Fourier series, were evaluated 
numerically and were compared with appropriately 
simulated distributions of]El. The computations were 
carried out for a range of atomic compositions, and 
numbers of unrelated centrosymmetric fragments 
that comprise the asymmetric unit; both of these 
factors have a significant influence on the devia- 
tion of the hypercentric p.d.f.'s from the values 
predicted on the basis of the central-limit theorem 
approximation. 

Introduction 

Ideal distributions (i.e. those based on the central 
limit theorem) which account for the presence of 
non-crystallographic symmetry were first proposed 
by Lipson & Woolfson (1952) and were further gen- 
eralized by Rogers & Wilson (1953). Shmueli & 
Wilson (1982) mention a study of the non-ideal bicen- 
tric distribution, in which several explicit orthogonal 
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polynomials that have the Rogers & Wilson (1953) 
probability density function (p.d.f.) as their weight 
function were derived. Another approximate gen- 
eralization of the Rogers & Wilson ideal p.d.f., to all 
centrosymmetric space groups and heterogeneous 
atomic compositions, was put forward by Ghosh & 
Nigam (1983). These approximate non-ideal p.d.f.'s 
are characterized by an unusual complexity, and the 
chance of success for deriving non-ideal hypercentric 
p.d.f.'s, which lend themselves to accurate computa- 
tion, looked remote. The introduction of the Fourier 
method into crystallographic intensity statistics 
(Shmueli, Weiss, Kiefer & Wilson, 1984) led to a 
relatively straightforward derivation of an analyti- 
cally exact and accurately computable bicentric p.d.f. 
(Shmueli, Weiss & Kiefer, 1985). A major role, in 
this novel approach, is played by the characteristic 
function corresponding to the required p.d.f. In fact, 
the knowledge of this function suffices for an exact 
and explicit formulation of the coefficients of the 
Fourier series which represents the required p.d.f. 
Similar investigations of hypercentric distributions of 
higher orders can now be readily undertaken, at least 
for the space groups leading to a simple functional 
form of the structure factor. 

The purpose of the present work is (i) to derive 
exact and explicit functional forms of two types of 
non-ideal hypercentric p.d.f.'s based on an asym- 
metric unit of the space group P1, which (a) consists 
of several identical centrosymmetric subunits, of 
arbitrary composition, that are interrelated by addi- 
tional centres of symmetry [as in Rogers & Wilson 
(1953)], or (b) is built up from several unrelated 
centrosymmetric subunits of arbitrarily different sizes 
and chemical compositions, and (ii) to compute the 
p.d.f.'s, for a range of subunit numbers, sizes and 
compositions, to good accuracy and to test the results 
against histograms of appropriately simulated ILl 
values. 
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Derivation of multieentric p.d.f.'s in P1 

Case 1: Identical centrosymmetric fragments related 
by centres of symmetry 

In this case we seek to determine the p.d.f, for a 
P1 structure, the asymmetric unit of which is com- 
posed of 2 n-2 identical centrosymmetric motifs, 
related by n -  1 non-crystallographic centres of sym- 
metry (Rogers & Wilson, 1953). In contrast to that 
reference, the fundamental motif is allowed to have 
any chemical composition. The non-crystallographic 
centres of symmetry are located at the rationally 
independent positions d~, i =  2 , . . . ,  n. Note that the 
integer n refers, in the present case, to independent 
centres of symmetry, including the crystallographic 
one; thus n = 2 corresponds to the bicentrosymmetric 
arrangement. 

If we follow the derivation of hypercentric distribu- 
tions given by Rogers & Wilson (1953), we find that 
the normalized structure factor E for the above 
arrangement is given by 

m/2 

E=2"cos~b2cos03 . . . cos~b , ,  ~ njcos0j ,  (1) 
j = l  

where Ok=27rh.dk and 0 j=27rh . r j ,  h being a 
reciprocal-lattice vector, and rj the atomic position 
vector of the j th  atom within the asymmetric subunit; 
dk, k = 2 , . . . , n ,  are the position vectors of the 
independent non-crystallographic centres of sym- 
metry, nj is the normalized scattering factor of the 
j th  atom, and m is the number of atoms in the funda- 
mental centrosymmetric fragment. 

The required characteristic function is given by 

C(to~) = (exp (ito~E)), (2) 

which, upon substitution of E from (1) and integra- 
tion over the angular variables 0j, j =  1 , . . . ,  m/2, 
becomes 

~'12 ~12 

C(w,)=(2/rr) "-~ ~ .. .  ~ d O 2 . . . d ~ n  
0 0 

x Jo(2"totnj cos 02 . . .  cos t~,,) (3) 
L j = I  

and the Fourier coefficient for the p.d.f, of lEI, to be 
used with (10), is obtained from (3) as indicated 
below. 

The limiting form of the above p.d.f., for a structure 
composed of a large number of nearly equal atoms 
in the unit cell, is given by equation (12) of Rogers 
& Wilson (1953). The latter equation can be rewritten 
in terms of the magnitude of the normalized structure 
factor as 

p( E )=[2"/~r~2"-')] '/2 
rrl2 re~2 

x I ... I exp[-(E2/2") sec202 ...sec2~0.] 
0 0 

x sec 412... sec ~b, dO2.., dO,. (4) 

Equation (12) of Rogers & Wilson (1953) has recently 
been represented in terms of Meijer's G function 
(Wilson, 1987), thereby eliminating the multiple 
integration. The present comparative calculations 
involve a direct use of (4) in evaluating the tricentric 
p.d.f, for the equal-atom case and its comparison with 
the result obtained from (3), as used with the Fourier 
p.d.f. (10). 

Case 2: n -  1 unrelated centres in asymmetric unit 

We now wish to find the p.d.f, of I EI for a P1 
structure, the asymmetric unit of which consists of 
n -  1 unrelated centrosymmetric subunits, internally 
related by n - 1 non-crystallographic centres of sym- 
metry located at di, i -- 2 , . . . ,  n. The n - 1 non-crys- 
tallographic centres of symmetry are assumed to 
occupy rationally independent positions, and the 
subunits may differ in their sizes and chemical 
compositions. Clearly, for n -- 2 we obtain the bicen- 
trosymmetric arrangement that leads to the non-ideal 
bicentric distribution. Let the ith subunit be centred 
at d,, and contribute to the unit-cell contents N; atoms. 
Its contribution to the normalized structure factor is 
given by 

N J 4  

E~i~(h) = 4  ~ nj cos (27rh.d,) 
j = l  

× cos [2~'h. (rj - d i ) ] ,  (5) 

and has the same functional form as that of the 
structure factor for the bicentrosymmetric arrange- 
ment (Shmueli, Weiss & Kiefer, 1985). Since the 
normalized structure factor for the above-defined n- 
centrosymmetric arrangement is just 

E(h)= E E~'l(h), (6) 
i=2 

the characteristic function for this arrangement is a 
product of n - 1 characteristic functions correspond- 
ing to terms of the form of (5). The latter characteristic 
function has the same form as that of the bicentric 
p.d.f. (Shmueli, Weiss & Kiefer, 1985), and hence 

C(tol) = (exp (iw~ E)) (7) 

= ~ C~'~(~o,), (8) 
~=2 

where 

C~) (w, )= (2 / r r )  l-I Jo(4w~n} ~ cos O) dO, (9) 
0 j = l  

-<i) is the normalized scattering factor of the where r 0 
j th  atom in the asymmetric part of the ith centrosym- 
metric fragment of the structure. 

The general expression for the non-ideal centric 
Fourier p.d.f, o f ] E  I is given by 

P([EI)=a[ l+2k=, ~ C(~'ak) c°s(~'aklEI)] ' (10) 
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where a is the reciprocal of the maximum value of 
IEI, and C ( ' n ' a k )  - the value of the characteristic 
function at the point rink - is the composition- and 
symmetry-dependent Fourier coefficient [see, for 
example, Shmueli & Weiss (1985, 1987)]. In the pres- 
ent work, the functional forms of C are given by (3) 
and (7)-(9) for cases 1 and 2, respectively. 

good agreement between the ideal and the non-ideal 
p.d.f.'s, as could have been expected. In the presence 
of heavy atoms (Fig. lb)  there is a significant dis- 
crepancy between the ideal and the non-ideal p.d.f.'s. 
However, the discrepancy is much smaller than in 
the case of the bicentric distribution (Shmueli, Weiss 
& Kiefer, 1985). This is not surprising since the 

Illustrative examples 

The examples below involve simulation of the distri- 
butions, and their comparison with the theoretical 
p.d.f.'s. For case 1 above, (1) served the purpose of 
the simulation, and the theoretical p.d.f, for this case 
is computed from (10), with coefficients derived from 
the characteristic function (3). In distributions per- 
taining to case 2 above, (5) has been used for the 
simulatio'n, and the theoretical p.d.f.'s were computed 
from (10) with coefficients given by (7)-(9) as 
described above. The simulation of the distributions 
of I EI in both cases outlined above consisted of samp- 
ling the structure-factor expressions while replacing 
the scalar products h .  di and h .  rj by computer-gener- 
ated random numbers, uniform in (0, 1). The values 
of 3000 I•l's have so been simulated in each calcula- 
tion, and their histogram was constructed in the [0, 3] 
range of IEI, in thirty equal channels. For the purpose 
of the comparison, the values of the theoretical p.d.f., 
taken at the midpoints of the histogram channels, 
were scaled to the histogram (Shmueli et aL, 1984). 

The numerical integrations which were carried out 
in this work were found to be most conveniently done 
by employing Romberg's adaptive procedure (Davis 
& Rabinowitz, 1967). This method seems to overcome 
some difficulties associated with the presence of 
oscillatory functions in the integrands. The subroutine 
D C A D R E  of the popular mathematical program 
library IMSL was employed for this purpose. 

Fig. 1 shows distributions belonging to case 1. This 
is a Rogers & Wilson type of hypercentrosymmetry, 
with a heterogeneous atomic composition displayed 
in Fig. l (a ) ,  and the equal-atom case shown in Fig. 
l(b).  Both figures contain the simulated histograms, 
the non-ideal p.d.f.'s computed from (10), with 
coefficients derived from (3), and the ideal Rogers & 
Wilson (1953) p.d.f.'s computed directly from (4) (for 
n = 3) by numerical integration. The Fourier p.d.f.'s 
in Fig. 1 show some convergence problems, and the 
series-truncation ripples are more marked in the 
equal-atom case than for the heterogeneous composi- 
tion. Such ripples can be smoothed out using, for 
example, the Lanczos sigma factors (Hamming, 
1973), but it was decided not to apply this device 
since the weighting factors tend to distort the p.d.f. 
at its low end. 

There is very good agreement between the histo- 
grams in Fig. 1 and the corresponding Fourier p.d.f.'s. 
In the equal-atom case (Fig. l a )  there is also a very 

2 IEI 3 
(a) 

I 2 3 
IEI 

(b) 

Fig. 1. Histograms, ideal and non-ideal p.d.f.'s for hypercentric 
models of case 1. The construction of the histograms is outlined 
in the text. (a) CI4U subunit, n=3; solid: equations (10) and 
(3); dashed: Rogers & Wilson (1953) ideal hypercentric p.d.f. 
(4). (b) C15 subunit, n = 3; solid: equations (10) and (3); dashed: 
Rogers & Wilson (1953) ideal hypercentric p.d.f. (4). 
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asymmetric unit in the tricentrosymmetric arrange- 
ment contains two centrosymmetric fragments and 
its total composition is C56U4. This degree of 
heterogeneity is lower than that of C28U2, which was 
the model asymmetric unit in the study of the bicentric 
case. 

Fig. 2 illustrates distributions belonging to case 2 
(two unrelated centrosymmetric motifs in the asym- 

| I 

2 3 
IE1 

(a) 

I ! 

I 2 3 
IEi 

Ib) 

Fig. 2. Histograms, ideal and non-ideal p.d.f.'s for hypercentric 
models of case 2. The construction of the histograms is outlined 
in the text. (a) C~4U subunit, n =3; solid: equations (10) and 
(7)-(9); dashed: Wilson (1949) centric p.d.f. (b) C~5 subunit, 
n = 3; solid: equations (10) and (7)-(9); dashed: Wilson (1949) 
centric p.d.f. 

Table 1. Discrepancy measures for comparison of simu- 
lated and theoretical distributions 

The assumed composition of the asymmetric subunit is C ~ 4 X ,  

X = C or U, and all the subunits are taken to be identical, even 
in case 2 calculations. The effective number of histogram channels 
is 29 or 30 in all simulations that are referred to in the table. The 
quantity n - 1 denotes the number of independent non-crystallo- 
graphic centres of symmetry in case 1 calculations, and the number 
of unrelated centrosymmetric fragments in case 2 calculations. The 
subscript 'centric' on X 2 refers to the comparison of the simulated 
histogram with the Wilson (1949) p.d.f., and the subscript 'eq. (4)' 
on X 2 refers to the comparison of the simulated histogram with 
the Rogers & Wilson (1953) ideal hypercentric p.d.f. In the calcula- 
tion of X 2 for case 1 the first bin of the histogram was omitted, 
since the p.d.f.'s tend to infinity at the origin, and at the midpoint 
of the first bin their values are unusually large. 

Case 1 
n - 1 Composition X 2 2 ,)(eq (4) 

2 CI5 32'28 19.15 
2 CtnU 26"00 133"18 

Case 2 
n - 1 Composition X 2 2 Xcentric 

2 Cls 26.68 72-35 
5 Cls 16-01 18'93 
2 C~4U 17.77 26.47 
5 Ct4U 16"01 15.48 

metric unit of P1); Fig. 2(a) displays the effect of 
atomic heterogeneity, and Fig. 2(b) pertains to the 
equal-atom case. The dashed curve in both figures is 
the Wilson (1949) centric p.d.f. It is seen that the 
distribution arising from two centrosymmetric unre- 
lated units is remarkably close to the ideal centric 
one, although the heterogeneous composition gives 
rise to a better agreement with the centric p.d.f, than 
does the equal-atom composition in case 2. In the 
heterogeneous composition we have four equal heavy 
atoms in the asymmetric unit of P1, and since the 
centrosymmetric subunits were assumed to be unre- 
lated - and the heavy atoms taken as uranium - we 
have (very roughly) a P1 structure having four equal 
atoms in the asymmetric unit. When the centrosym- 
metric subunits are chosen to be different, and there 
is appreciable heterogeneity, the deviation from the 
centric p.d.f, is more significant. The small but sig- 
nificant deviation from the centric p.d.f, shown by 
the equal-atom case 2 distribution is the effect of 
non-crystallographic centrosymmetry on the distribu- 
tion. When the number of the unrelated centrosym- 
metric subunits is increased to five, the agreement 
with the centric p.d.f, becomes very good. The 
geometry of the case 2 model is related to that under- 
lying the sesquicentric distribution (Wilson, 1956). 

In all above cases, the agreement between the Four- 
ier p.d.f.'s and the simulated histograms is (visually) 
very close, and is characterized by good X 2 values, 
shown in Table 1. However, it should be pointed out 
that for the compositions chosen the ideal p.d.f.'s also 
perform quite well, except in case 1 for extreme 
heterogeneity and in case 2 for two equal-atom frag- 
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ments. When the number  of  unrelated fragments 
increases the Fourier  p.d.f. 's and the histograms are 
seen to approach  the ideal centric p.d.f, for 
homogeneous  as well as heterogeneous composit ions.  
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the Tel Aviv University Computa t ion  Centre. This 
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G6om~trie des Relations d'Orientation dans la Sym~trie Hexagonale. 
Dimension de la Coi'ncidence 
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L E R M A T ,  I S M R a  UniversitY, 14032 Caen C E D E X ,  France 

(Refu le 4 ddcembre 1987, accept~ le 22 ao~t 1988) 

Abstract 

The main characteristics of  the orientation relation- 
ship between two hexagonal  lattices are s imply 
denoted by four parameters  (M, U, V, W). In the 
case of a t r id imensional  coincidence orientat ion 
relat ionship,  for a rational value of ( c / a )  2, these four 
parameters become four prime integers (m, un, vn, 
wn). The equivalence class of  the orientation relation- 
ship may be represented by 12 equivalent  descriptions 
for which the indices of  the rotation axes are noted 
on the basis of  one crystal. This original representa- 
tion can lead to the concept of  spatial distr ibution of 
the equivalent  rotation axes, a distr ibution which is 
strongly related to the c / a  ratio. In real materials 
( c / a  irrational),  b id imens iona l  coincidence orienta- 
tion relat ionships can describe a large number  of  
grain boundaries .  

1. Introduction 

Les 6tudes sur la g6om6trie des orientations de CO'l'n- 
cidence pour  la sym6trie hexagonale  ont vraiment  
d6but6 par les travaux de Bruggeman, Bishop & Hartt 
(1972). Ils ont recherch6 de fagon syst6matique, mais 
non exhaustive,  les coi 'ncidences qui apparaissaient  

* En d6tachement provisoire ~ l'Institut des Sciences Industriel- 
les de l'Universit6 de Tokyo, Japon. 

par  rotation autour d 'un  axe (simple) choisi a priori. 
C'6tait l ' appl ica t ion  de la notion de fonction g6n6- 
ratrice que Rangana than  (1966) avait d6velopp6e 
pour la sym6trie cubique.  Une deuxi~me approche,  
beaucoup plus g6n6rale, a 6t6 6tablie par  Warr ington 
& Bufalini (1971) et Warr ington (1975); elle consid~re 
la matrice de rotation d6crivant l 'or ientat ion de co'in- 
cidence; ils ont montr6 qu 'une  telle matrice, 6crite 
sur la base du crystal, doit avoir tous ses 616ments 
rationnels.  Ceci a 6t6 d6montr6 la suite par  Gr immer  
(1976). D~s lors, il a 6t6 6vident que les co~'ncidences 
t r id imensionnel les  ne pouvaient  exister que pour  des 
rapports ( c / a )  2 rat ionnels  ou que pour  des cas par- 
ticuliers, ind6pendants  du rapport  c / a  (rotations 
d 'axe c ou rotations 180 ° d 'axes dans le p lan de base). 
Parall61ement depuis  le d6but des ann6es 1970, 
Gr immer  a d6velopp6 le concept de quaternion 
(quatre nombres  entiers, premiers entre eux) pour  
caract6riser la rotation de coi'ncidence. D 'abord  pour  
la sym6trie cubique (Grimmer ,  1973), puis en g6n6- 
ralisant aux autres sym6tries (Grimmer ,  1980), cet 
auteur a montr6 la validit6 et l 'utilit6 de ce concept. 
Bonnet (1980) a aussi utilis6 ce concept pour  d6crire 
les orientations de co~'ncidence entre deux r6seaux 
quelconques.  Une autre approche  a &6 propos6e par 
Bonnet & Cous ineau  (1977) et Bonnet, Cous ineau  & 
Warrington (1981); elle est associ6e ~ une m&hode  
num6rique pour  la d6terminat ion directe de la mail le  
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